

The double wall lifting anchor type "TA" is used in double wall elements for wall thicknesses from 18 cm to 40 cm as a connection point for attaching the pre-cast element to load-bearing equipment.

The anchor consists of a stirrup with a nominal diameter of 14 mm. It is open at the bottom, while at the top, the two side pieces are bent at approx. 25° to meet in the middle.

Where the bending starts, there is a horizontal connecting of the same material between the two side pieces of the stirrup.

PRODUCT SPECIFICATION

Grade » B500B

Ductility » High

Fabricated » According to DIN 17660 or general technical approvals

Availability » On request

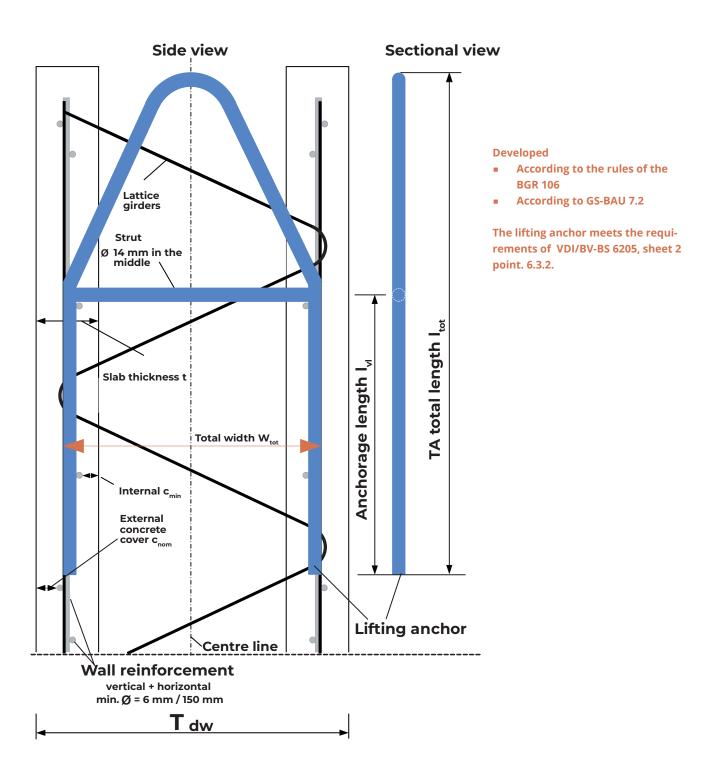
Transportation » On euro pallet

Certification according to

» BGR 106 and GS-Bau 7.2

RANGE AND DIMENSIONS

The "TA" lifting anchor may only be installed and used according the most up-to-date version of the installation and use instructions.


Туре	Total width*	Total length approx.	Double wall thickness for c _{nom} = 20 mm and d = 55 mm (for example)	Packages per pallet
TA	\mathbf{W}_{tot}	I _{tot}	T_dw	Packages
IA	[mm]	[mm]	[cm]	[Items
14	138	515	18 bzw 19**	500
15	148	490	20	500
16	158	500	21	400
17	168	510	22	400
18	178	515	23	400
19	188	510	24	400
20	198	520	25	400
21	208	535	26	300
22	218	540	27	300
23	228	550	28	300
24	238	560	29	300
25	248	570	30	300
26	258	580	31	300
27	268	585	32	300
28	278	630	33	150
29	288	605	34	150
30	298	610	35	150
31	308	625	36	150
32	318	635	37	150
33	328	645	38	150
34	338	655	39	150
35	348	665	40	150

^{*} In general, the height of the lattice girder required (when using the KT 800) is equal to the total width w_{tot}. If the concrete cover or skin thickness t is changed or if the KTW girder is used, the transport anchor type at the height of the lattice girder needs to be changed.

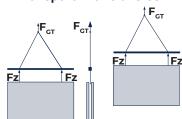
^{**} For double wall thickness D_{dw} = 18 cm: skin thickness 55 mm, external concrete cover C_{nom} = 15 mm For double wall thickness D_{dw} = 19 cm: skin thickness 60 mm, external concrete cover C_{nom} = 20 mm

The lifting anchor is also available with end hooks (90°) (TAE).

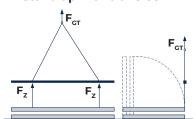
Lifting anchor loads*					
Concrete strength at the time of first use	f _c [N/mm²]	15	20		
Axial tension	Perm. F _z [kN]	32	37		
Diagonal tension, β ≤ 45°	Perm. F _z [kN]	20	24		
Cross tension	Perm. F _z [kN]	8,9	9,4		
Diagonal cross tension, β ≤ 45°	Perm. F _z [kN]	7,7	8,3		

^{*} Already includes lifting load coefficient Ψ of 1,3 (according to GS-Bau-7.2, page 11. 1.1)

f_c= Concrete strength, calculated using cubes with edge lengths of 150 mm.

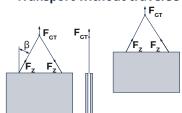

Perm. F₂= permissible anchor force in direction of pull

 β = Angle of tilt of the load application, see image 4.6 and 8 on pages 6 and 7 of the installation and

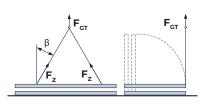

usage instructions

Connection type		Axial tension	Cross tension
f _c min. 15* N/mm²	Perm. F _z [kN] **	32	8,9
f _c min. 20* N/mm ²	Perm. F _z [kN] **	37	9,4

Transport with traverse



Stand up with traverse



Connection type		Diagonal tension	Diagonal cross tension
f _c min. 15* N/mm²	Perm. F _z [kN] **	20	7,7
f _c min. 20* N/mm ²	Perm. F _z [kN] **	24	8,3

Transport without traverse

Stand up without Traverse

^{*} Minimum value of the concrete compressive strength of both slabs upon first load in N/mm2 (calculated using cubes with edge lengths of 150 mm)

^{**} Perm F_z = permissible anchor force in direction of pull